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for faster-than-sound neutrons is (Willis & Pryor, 
1975) 

IXDS,2, = constant x (sin 20/A2)F2e-2MksT. (4) 

Here F is the structure factor for Bragg scattering, 
e - 2 M  is the Debye-Waller factor (where M =  
B sin 2 0/A 2) and T is the absolute temperature. The 
constant includes the elastic constants and the range 
of scan. Equation (4) is essentially unchanged for 
more realistic scans (Cooper, 1971). 

Expression (4) is readily converted to the time-of- 
flight case by using the prescription of Buras & 
Gerward (1975). Thus 

ITDS,t = constant x ~0 (A)A2F2e-2MkBT, (5) 

where ~o(A) is the incident-beam intensity per unit 
wavelength range. If we plot 

ITDS,,I[ ~O( X )X 2F2T] 
on a logarithmic scale versus sin 2 0/• 2, the points 
should lie on a straight line of s lope-2B.  

The measured data have been normalized to the 
incident flux ~o (A), which was determined by monitor- 
ing the incident spectrum with a dilute 3He detector 
and correcting for the variation of detector efficiency 
with neutron wavelength. Moreover, T is constant 
(293 K) and the structure factor F of silicon is the 
same for all reflections in the hhO zone. Thus in Fig. 
4 we have simply plotted In (ITDs, t)/tp(A)A 2 versus 
sin 2 0/A 2. 

At large values of sin 2 0/A 2 the curves have a nega- 
tive slope indicating B---0.42 A 2, which is close to 
the accepted value, B = 0.46/k 2, quoted by Krec & 
Steiner (1984). However, as the wavelength increases 
and the neutron velocity falls below the velocity of 
sound in the crystal, there is a sharp fall-off in the 

integrated intensity ITDS [as compared with that 
calculatbd from (5)]. The neutron velocity v is related 
to its wavelength by the de Broglie relation A = 
h/(m,v). The lines L and T in Fig. 4 indicate the 
range of sin 2 0/A 2 over which the neutron velocity 
lies between the maximum longitudinal (L) and 
minimum transverse (T) sound velocities. In the time- 
of-flight case the locus in reciprocal space for elastic 
scattering is a line along the reciprocal-lattice vector, 
unlike the fixed-wavelength case where this locus is 
the Ewald sphere. This line is at 90 ° -  0 to the scattered 
wave vector k and so a geometrical term, see O, is 
necessary in Calculating the positions of L and T in 
Fig. 4. The sound velocities were calculated from the 
elastic constants given by McSkimin (1953). 
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Abstract 

Two different kinds of interaction between three 
waves Do, Dh and Dg in a perfect crystal are investi- 
gated in the case of Laue scattering using the Takagi- 
Taupin equations. Polarization effects (coupling 

0108-7673 / 86/030191-07501.50 

between t~ and ,~ waves) are neglected, and it is 
assumed that the incoming vacuum wave D(o e) has a 
small wave-front area whose spatial extension is simu- 
lated by a point source on the crystal surface. The 
solutions of the diffraction equations thus constitute 
the boundary-value Green functions for the wave 
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fields. In the first case it is assumed that Dg is only 
indirectly coupled to Do. In the second case energy 
is allowed to be exchanged between Do and Dh and 
between Do and Dg, but no Dh-Dg interaction is 
present. In both of these situations the field ampli- 
tudes are given by expressions that contain simple 
products of zeroth- and first-order Bessel functions. 
It is suggested that the intensity pattern can be 
observed directly. The transition to an incoming plane 
wave is outlined, and it is also demonstrated that the 
hyperbolic intensity fringes generated by two 
spherical waves can be deduced from the derived 
expressions. 

Introduction 

The probability of exciting more than two coupled 
waves is generally small when illuminating a crystal 
with X-rays. This is in pronounced contrast to high- 
energy electron diffraction where the shorter 
wavelength and correspondingly smaller Bragg angle 
increase the number of simultaneous overlaps 
between reciprocal-lattice points and the Ewald 
sphere. Nevertheless, three-beam diffraction has in 
X-ray crystallography recently found application as 
a method for retrieving the phases of reflections. The 
starting point for calculating intensities diffracted 
from mosaic crystals has to be the plane-wave theories 
that originally were developed for perfect crystals 
(Pinsker, 1978; Kato, 1974; Post, 1983; Chang, 1984). 

We want in this paper to address ourselves to a 
different aspect of many-wave theory. It has been 
shown by Kato (1961) that an incoming spherical 
wave in the case of two beams is capable of exciting 
an extended portion of the dispersion surface. This 
effect results (Hattori & Kato, 1966) experimentally 
in hyperbolic section patterns whose appearance is 
governed by Bessel functions ofzeroth and first order. 
However, identical angular intensity distributions 
have been obtained by Authier & Simon (1968) by 
means of the conceptually simpler Takagi-Taupin 
treatment (Takagi, 1962, 1969; Taupin, 1964). A 
natural extension of these calculations would be to 
obtain solutions that are valid for three coupled 
waves. Using integral equations (Bremer, 1984) we 
now perform such a generalization. The derived 
expressions can be looked upon as boundary Green 
functions for the wave field inside the crystal, and 
may for that reason find applications in analytical 
and numerical works. If the wave front of the incom- 
ing wave is sufficiently narrow, however, it should be 
possible to make a direct observation of the intensity 
pattern. 

The three-dimensional interference pattern 

The field equations 
The vacuum wave entering the crystal is assumed to 

excite the wave field 

D(r) = Y. Dq(r) exp (-2zrikqr), (1) 
q 

where the crystal wave vectors kq are given by 

kq =ko+q.  (2) 

Here q denotes a reciprocal-lattice point while q is 
the associated reciprocal-lattice vector. 

The vector amplitudes {Dq} are decomposed along 
two mutually orthogonal directions defined by the 
polarization vectors { e~q,,,/z = 1, 2} (usually called &q 
and ~rq), i.e. 

Oq = E Dq.tq,~. (3) 
p. 

According to the Takagi-Taupin equations for a per- 
fect crystal (Takagi, 1969) we have 

O Dq,~/ Osq = 2ilrKfleDq~ , 

- i ~ K {  ~ Xq_e(eq~,.~e~)Dp~}, (4) 

p ~ q  

where Sq is a coordinate along the base vector sq = 
kq/kql, K = 1/A is the wave number of the incoming 
vacuum wave, and the parameter flq is defined 
(Authier, Malgrange & Tournarie, 1968) as 

~q = [Ikql- K(1 +½Xo)]/K. (5) 

The Fourier components of the electrical susceptibil- 
ity, Xq, are given by 

Xq=-(r ,  AE/zrVc)Fq. (6) 

Here re is the classical electron radius, Vc the unit-cell 
volume and Fq is the structure factor of the reflection 
q. Refraction and average absorption are associated 
with Re {Xo} and Im {Xo}, respectively. 

The first term on the right-hand side of (4) can 
always be eliminated by means of a simple redefini- 
tion of phases, i.e. 

The difference between Dq. and/gq,  turns out to be 
important for the intensity distribution only in the 
case of incoming waves with extended wave fronts. 
We will use the symbol D for the wave fields 
everywhere when confusion cannot arise. 

Up to this point we have not restricted the number 
of waves participating in the interaction. In what 
follows we will, however, limit ourselves to studying 
the coupling of three waves, i.e. q E (0, h, g). Further- 
more, we will neglect terms due to coupling between 
the & and ~ components of the waves, i.e. 

(8) 
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where 8 is the Kronecker delta symbol. The index/~ 
is therefore dropped from now on. 

Defining the parameter 

= ep) , ( 9 )  z~_p (_zrKXq_p~q.~-1 

whose real value is equal to the extinction length, we 
can write the equations describing the coupling of 
three waves explicitly as 

ODo/OSo = irhlDh + icglDg (10a) 

O D h / O S  h = i T h l g D g  -b irhlDo (10b) 

ODg/Os s = icglDo + " -lt~'g_hDh, (10c) 

where we have performed the transformation indi- 
cated by (7). 

Integral-equation formulation and boundary conditions 

The wave amplitude Dh(So, Sh, Sg) is formally 
obtained from (10b) by integration 

Dh(so, Sh, S~) = Dh[So, S~,(So, S~), S~] 
s h 

+(i/~h_~) b I ds~D~(so, S~,S~) 
sh( So, sg) 

$ h 

+(i/'rh) b ~ ds'hDo(So, S'h, Sg) 
sh(so, sg) 

(II) 

with corresponding expressions for Do and D r The 
function Sh = sb(So, Sg) describes the shape of the crys- 
tal boundary. Equation (11) is analogous to the 
equation used by Werner (1974) for solving the Dar- 
win transfer equations in the two-beam case. We 
assume that the boundary values of Do, Dh and Dg 
are known and limit the discussion to cases where 
there is no direct coupling between two of the three 
waves: 

(i) I~l-~°°- 
(ii) [ 'F±(h--g)[ "-) 00. 

Case (i) corresponds to Izg[ ~, Ira[ and ~g ~, Zg-h. Case 
(ii) is realized when [zh_g[>> zh and [Zg_hl>>lzg[. We 
will only consider 'proper' three-dimensional cases 
where the coordinates So, Sh and sg are independent. 
Coplanar diffraction is therefore excluded. Using the 
expressions corresponding to (11) for Do and Dg we 
find that Dh in case (i) fulfils 

Dh ( So, Sh , S~ ) 

= Dh[so, s~,(So, s~), s~] 
s h 

+(i/'rh) b I dS'h Do[sbo(S'h,Sg),S'h, Sg] 
sh(So,Sg) 

s h 

+(i/rh-g) b I dS'h Dg[So, S'h,S~(So, S'h)] 
sh( So, sg) 

Sh , So 

- ( ~ h ~ )  -1 ~ I ds~, ! ds~ Dh(sL, S'h, S,) 
shCso, s~) s~(s , s s) 

Sh 

- (~h-gZg-h)-1 b ~ ds~, 
sh(So, sg) s s 

X b I ds i Dh(So, S'h, Sl). 
ss(so, sL) 

(12) 

In case (ii) it is more convenient to work out an 
equation for Do which takes the form 

Do(so, sh, s~) 

-" Do[Sbo(Sh, Sg),  Sh, Sg] 

s o 

sh(so, s~),s,]  +(i/r~) b I ds~Dh[s~, b , 
so(sh, Sg) 

s o 
b l +(i/ 'r,)  b I ds~)Dg[s~),Sh, Sg(So, Sh)] 

So( sh, sg) 

s O $ h 

--(¢h'h)-I b I ds~ b ! ds~ Do(s~, s~,, Sg) 
SO(Sh, sg) Sh(so, sg) 

s o ss 

-(~)-1 b I ds~ b ! dsL Do(S~, sh, sL). 
So(sh, sg) sg(So, Sh) 

(13) 

The boundary-value Green functions for the wave 
fields are obtained by locating a point source at the 
origin of the coordinate system defined by the base 
vectors So, ~h and ~g (Fig. 1). The boundary conditions 
are then given by 

Do[Sbo(Sh, Sg),Sh, Sg]=8(Sh)8(Sg) (14a) 

Dh[ So, s~( So, sg), sg] = 0 (14b) 

Dg[ So, Sh, sbg(so, Sg)] = 0. (14C) 

A discussion of  geometrical factors which are to 
be included in (14a) in case of an incoming plane 
wave will be given later. Equations (14) imply that 
the wave fields outside the pyramid defined by So, ~h 
and ~g are zero. This is a natural extension of the 
analogous arguments put forward for the two-wave 

A Psi 

t 

X ! 

~ YQ 

Fig. 1. The origin of  the applied coordinate system is located at 
0 and the narrow incoming wave points in the OR direction. 
The unit vectors ~o, ~n and ~g are parallel to OR, OC and OA. 
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case (Kato, 1976) since it is impossible for photons 
to reach this part of the crystal through scattering/re- 
scattering events. In general, the lower limits of 
integration in (12) and (13) have to be replaced by 

L sq (q = O, h, g), where, for instance, 

SLo=S~(Sh, Ss)=max{O, Sbo(Sh, Sg)}. (15) 

Restricting ourselves to 'normal' Laue diffraction we 
put L_ 0. S q -  

Combining the results above we arrive at the fol- 
lowing integral equation for the wave fields: 

Case (i) I~-~sl ~ oo. 

Dh ( So, Sh, Sg ) 

=(i/zh)a(Sg) 
s h s o 

--(Zhrg)-' I ds~ I ds~ Dh(s~,s~,sg) 
o o 

Sh $g 
- ( , ~ - ~ - ~ 1 - '  I ds'~ I ds; D,,(So, S'~,si). 

0 0 
(16) 

Case (ii) I~±<._~,1-~o~. 

Do(so, Sh, S~) 
= a(Sh)8(S~) 

s o s h 
--(¢h¢~)-1 [. ds~ I ds~h Do(S~,S'h,Sg) 

0 o 

s o sg 

- (rg~'g)-' I d s ;  J ds~ Do(s'o, Sh, Sl). 
o 0 

(17) 

Let P be an arbitrary point inside the pyramid defined 
by So, ~h and ~g, cf. Fig. 1. It follows from (16) and 
(17) that the fields Dh (i) and Do (ii) are given by 
integrals over the parallelograms PBAS, PQRS and 
PQCB. In effect, then, the whole volume of the 
oblique prism OABCPQRS contributes to the fields 
at P. 

Solutions for the wave fields 

Using the boundary conditions (14) we now work out 
general solutions of (12) and (13) by means of an 
iterative procedure. 

Case (i). Equation (16) can be rewritten as 

Dh( so, Sh, Ss) = ( i/ ¢h)8( Ss) + {-- ( rheg)-l Lho 

-- ( ' rh_g 'rg_h)- l  Lhg} Dh  ( So, Sh, Sg), 
(18) 

where the linear operators Lho and Lag are  defined by 

sh s o 

Lho{Dh(So, Sh, SS)}= ~ dS'h ~ ds~ Dh(S~, S'h, Sg) 
o o 

(19a) 

s h 
Lhg{Dh(So, Sh, sg)}= ~ dsrh s~ ds~ Dh(so, s~, s~). 

0 0 
(19b) 

The wave field Dh thus becomes 

D h (  SO, Sh, Sg) = ( i/ Zh)[1 + ( rhrg)-i Lho 

+(Zh-gZg-h)-'Lhg]-'a(Sg), (20a) 

which may be expanded as 

D h ( S o ,  Sh, S g ) = ( i / ~ ' h )  ~ ( - - l )"[ (7"h1"g)- lLho 
n=O 

"~ ( Th-g 'rg_ h ) -1 t h g ] n S (  Sg) 

oo oo 
=(i/rh) X ~, (n~m)(--1)"+m 

n=O m=O 

x (~h~)-~ (~h_g~_h)-mL~oLh~ a(sg). 
(20b) 

We have used the binomial theorem and L~oLh'ng 8(sg) 
means n and m successive applications of the 
ope ra to r s  Lho and Lhg on the Dirac function. The 
result of this operation is 

L~,oLhg 8( s~) = ( n !)-Z( soSh)"8( s~) 8,,.0 
+(n!)- 's~[(n+ m) !]-'s~, +m 

x[ (m- l ) r ' - t . j  s,m-'(1-a,,,.o). (21) 

Combining (20b) and (21) we find that the sum over 
n and m represents a product of two Bessel functions 
of zeroth and first order: 

D,,( So. s,,. s,) = ( i l  ~-,,){Jo[E(~-,,.rb-'/~(SoS,,)'/~]a(s,,) 
--( ~'h-~'~-h)-ll~( shl s~)ll~ 
x &[ 2( ~h~)-l/2(SoS~ )1/2] 

x Jl[2(Zh-gZ,-h)-l/2(ShSg)l/2]}. (22a) 

Knowing Dh, we obtain Do from (10a) and Dg from 
(lOc): 

Do(so, sh, sg)= 8( sh) 8( Ss) -- ( ¢hZa)-'/2( So/ Sh) '/2 

X J112(ehef;)-'/2(SoSh) 1/2] 8(Sg) 

"~- ( Th ~'ft Th_g rg_h ) - l / 2 (  So/ Sg ) 1/2 

x J,[2(~-h~-,;)-'/~(SoS~) 1/~] 
XJ,[2(Zh-srg-h)-'/2(ShS,)'/2]; (22b) 

D, (So, Sh, S, ) = --( Zh %-h)-' Jo[ 2( zh r~)-'/Z( SoSh )1/2] 
XJo[2(rh-g~'g_h)-)/2(ShSg)'/2]i (22c) 

The results in (22) should be multiplied by the unit 
step functions O(So)O(Sh)O(sg) in order to make it 
clear that the wave fields are zero outside the pyramid 
defined by the unit vectors ~o, s~ and ~g. 
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Case (ii). The formal solution of (17) is 

Oo(So, Sh, Sg) -" E E (n+mm)(--l)n+m 
n=O m=O 

x 8(sh) 

(23) 
Using the result 

L~)hLomg 8(Sh) 8(Sg) 

= 8(s ) 8(s ) 8..o 8. o 

+(n!)-Xsg[(n-1)!]-lsT, -1 8(Sg)(1- 8~,o) 8m, 0 
|n--I m-1 +(m! ) - l s '~ [ (m-1 ) . l  Sg 5(Sh) 

X (1 -- 8re,o) 8~,0 

+[ (n  + m)!]-ls'~+m[(n - 1) !]-Xs~, -1 

×[(m-1)l]-XsT-l(1-8,, ,o)(1-gm,O), (24) 

we obtain for the field Do: 

Do(so, Sh, Sg)= 8(Sh) 8(Sg)--(ZgTg)-l/Z(So/Sg) 1/z 

x Jl[ 2('rg'rg)-l/E( sosg)X/2] 8( Sh ) 

--( So/ Sh)X/  
X Jl[2(q'h1"K)-l/2(SOSh)l/2] 8(Sg) 

+ (~hzaz~zg)-X/~So(ShS~) -x/2 

x J,[2(ThZg)-X/E(S0Sh)X/Z] 

xY,[2(zg~-g)-x/Z(sosg)X/z]. (25a) 

From (10b) we find 

Dh ( So, Sh, Sg) = ( i/'rh ){ Jo[ 2 (7"h~'g)-l/z(sosh) 1/2] 8( Sg) 

- ( z~zg) -x /~(So/s~)  x/~ 

x J0[2(~hZtr)-X/2(S0Sh)l/2] 

XJ~[2(ZgZg)-x/2(SoSg)X/2]}. (25b) 

A completely symmetrical expression for Dg can be 
derived from (10c): 

Dg(so, Sh, Sg) = (i/%){Jo[E(~grg)-l/~(SoSg) 1/~] 8(Sh) 
-- ( q.hq./].)-- 1/2( SO / Sh )X/2 

x Yo[2(~gzg)-l/2(SoSg)l/2] 

XJx[2(~-aZg)-x/2(soSh)l/2]}. (25c) 

Again, the fields are zero if at least one of the coordi- 
nates becomes negative. 

Discussion 

Transition to two waves 

The singular term 8 (s h) 8 (Sg) in the expressions for 
Do represents a wave that is transmitted without being 
scattered. Clearly, this is a result of modelling the 
exciting wave with a vanishing wave-front area. Fur- 

thermore, as is evident from (22) and (25), the Green 
functions for the wave fields have terms that are 
proportional to 8(sh) or 8(Sg). These terms have to 
be associated with two-wave diffraction, which takes 
place within the planes spanned by go and gg, or So 
and S~h, respectively. In order to show more explicitly 
that the usual two-wave solution for Do and Dh is 
included in (22) and (25), we now weaken the coup- 
ling to the third wave D_ This is done by permitting 

oo {case (i)} or z±,l-, oo {case (ii)}. In addi- 
tion, however, we have to replace the applied point 
source with a line source. The published expressions 
for two-beam intensities (Kato, 1974; Authier & 
Simon, 1968) are implicitly based on the presence of 
a narrow long slit oriented normal to the SoSh plane. 
In practice, the replacement is achieved by letting 
8 (s~) -> 1. We obtain the well known results 

Dh(so, Sh) = ( i/ Zh)Jo[2(~h~7;)-X/Z(SoSh) 1/2] (26a) 

and 
Do(so, Sh) = 8(Sh) - (ZhZg)-l/2(So/ Sh)l/2 

XJ,[2(~'hZg)-'/2(SoSh)X/2], (26b) 

which describe the spatial variation of two coupled 
waves. 

The intensity pattern 

The intensity Iq = DqD* inside the pyramid (Fig. 
1) is given by the non-singular parts of (22) and (25). 
The results of simulating Ih for the cases (i) and (ii) 
in a centrosymmetfic crystal are shown in Fig. 2. In 
order to show more clearly the position of the maxima 
and minima we exhibit not the intensity itself but 
rather its logarithmic variation [ln (Ih)]. Fig. 2(a) 
corresponds to (22a) while Fig. 2(b) is based on 
(25b). We have assumed that So, Sh and gg are perpen- 
dicular to each other and OA = OC = OR = 5[~h] with 
~h]=l (arbitrary units). Other parameters are 
I~g-h / ~h = 3/2(a) and = 3/2<b). Absorption 
is neglected and black portions correspond to areas 
with high intensity. The influence of the wave Dg on 
Dh is deafly seen in both (a) and (b). For the sake 
of comparison we have included the two-wave result 
based on (26a) in (c). It should be emphasized, 
however, that the intensity patterns shown in 
Figs. 2(a) and (b) are not obtained by superposition 
of two-wave expressions. In the limits of no direct 
interaction between two of the three waves the prod- 
ucts of two-wave expressions determine the fringes. 
Furthermore, in the same limits the intensity patterns 
will not contain information related to the invariant 
phase of the product of the structure factors involved 
(e.g. Hart & Lang, 1961; H~ier & Aanestad, 1981). 

Transition to plane waves 

The case of an "incoming plane wave with field 
amplitude D~o e) can be treated by decomposing the 
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wave into a uniform distribution of 6 pulses. The 
field density, do(S), at a point  S on the entrance 
surface of  the crystal takes the form 

do(S)= Dto ~ 8[q- f i (S )]  ~[t2-t2(S)], (27) 

where t~ and t~ are coordinates along unit vectors 
perpendicular to the propagation direction of  the 

C 

%i;,, : '%?., 

? i'!iiii,i ~,,,, 
i ......... i~::: !!iil i! :!!t 

A 

(a) 

R 

!i !;iii:. 
!l!ii" iiii !iii : , 

.~lll~]ii~il]~i!iii il ::2!!!liilg!i ! ~-"i[ :~:, 

C A 

(b) 

C A 
(c) 

Fig. 2. Modulation of lh (logarithmic scale) owing to the presence 
of a third wave D r The letters denote the same position as in 
Fig. 1. (See text.) A slight geometrical distortion (CR < CA) is 
introduced for technical reasons. (a) Indirect coupling between 
Do and D r (b) Direct coupling between Do and D r (c) Two- 
wave Pendell6sung fringes. In the limit of negligible direct coup- 
ling between two of the three beams the intensity patterns are 
given by products (not superpositions) of two-wave expressions. 

incoming wave go- (It is convenient to use the polariz- 
ation vectors {~o~,} as unit vectors associated with So.) 
In the oblique crystal system (So, Sh, S s) the density 
do(S) transforms into 

do(S)=  D~oe)J6[Sh--Sh(S)] 6[sg-sg(S)], (28) 

where 

J= [c)(Sh, Ss)/c)( fi, t2)] (29) 

is the Jacobian of the actual coordinate transfor- 
mation. 

The fields {/)q} due to the point source 6(Sh) 6(S s) 
are given by (22), (25). The field amplitude Dq at a 
point P inside the crystal due to a source at the point 
S thus becomes 

Dq(P ,- S ) =  Dq[So(P)--So($), Sh(P)--Sh(S), 

$~( P) - $,( s )  ] 

x exp {27riK Y: flp[ sp( P) - sp( S)]} 
p 

x O[so(P)-so(S)]O[sh(P)-sh(S)] 

x O[ss(P)-ss(S)] , (30) 

where p, q e {0, h, g}. 
The field Dq(P) due to the incoming plane wave 

is obtained by integrating (30) over the entrance 
surface. 

Dq(P)= D(oe)J ~ dS.~oDq(P ~- S). (31) 
S 

In (31), dS is a vector element of  the entrance surface 
area directed along the inward drawn normal vector. 
The simple case of  a plane surface is illustrated in 
Fig. 3. Only photons entering the triangular area ABC 
are capable of  contributing to the intensity at P when 
following arbitrary paths along the So, Sh and s8 direc- 
tions. The prism of  Fig. 1 is henceforth transformed 
into a pyramid.  

The field Dq is generally a function of two external 
divergency angles el and e2 which define the position 
of  the incident wave vector relative to the Laue point 
(Pinsker, 1978; H¢ier & Marthinsen, 1983). We now 

P 

Fig. 3. The extreme case of a plane wave entering the crystal. The 
triangular contour ABC shows that part of the surface region 
that is capable of contributing to the wave field at P (see text) 
(soHAP, shHCP and ~ [IBP). 
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let P represent a point on the exit surface of the 
crystal. The integrated intensity, Iq (P),  emerging from 
P is 

lq(P) = ~ del~ de2 Dq(el, e2)l 2. (32) 

The integrated power, Pq, is then obtained by integrat- 
ing (32) over the exit surface 

Pq= ~ dPAqlq(P). (33) 
p 

The surface element dP points in the direction of the 
outward drawn normal. 

It is difficult to perform analytically the integrations 
in (31), (32) and (33) and only numerical solutions 
are feasible for arbitrary crystal shapes. 

Concluding remarks 

The Takagi-Taupin equations have been examined 
for three coupled waves in the case of Laue diffrac- 
tion. When the coupling constant 1/,~ s or 1/~'±(h-g) 
becomes negligible it is possible to use integral 
equation techniques to obtain the boundary-value 
Green functions for the wave fields. The solutions, 
excluding any singular terms, may be taken as 
approximate expressions for the fields excited by a 
transversally limited wave packet when keeping away 
from the surface region and the SoSh and the SoSg 
planes. To the author's knowledge no experimental 
study of the frirtges generated by three indirectly 

coupled waves has been published. In principle, it 
should be possible to confirm the spatial behaviour 
of the intensities Iq .-. DqD* by intercepting a beam 
with the aid of a small pin hole or, alternatively, by 
locating a point source close to the surface of the 
crystal. In the case of an incident wave with an 
extended wave front, the intensity can be calculated 
by integrating the Green functions over the entrance 
surface allowing for the proper variation in ampli tude 
of the incident wave. 
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Phased X-ray Data to 4 A Resolution for a-Lactalbumin 
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Abstract 
~The simplest level of the statistical geometric (SG) 
or maximum-entropy (ME) approach to X-ray struc- 
ture refinement is applied to the task of trying to 
extend the resolution of electron-density maps for a 
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0108-7673/86/030197-06501.50 

small protein (a-lactalbumin).  The refinement was 
started from X-ray structure factor data to 4 A reso- 
lution, which had been phased by multiple isomor- 
phous replacement (MIR), and it was found that, 
even at this simple level, the ME-based approach 
yields a significant improvement in the maps and 
gives encouragement to the more general applications 
of these methods. 
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